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The statistical distr ibution of the  difference in intensities between inverse reflexions (Bijvoet 
difference) in non-centrosymmetr ie  crystals containing atoms, some of which scatter anomalously, 
has been invest igated theoretically. The theory is worked out for structures containing one, two 
and m a n y  anomalous scatterers (all asstuned to be alike) in addit ion to a large number  of non- 
anomalous scatterers. The theoretical  results have been tested with calculations based on hsqoo- 
thetical models and also with the  observed data  from two known structures. The agreement  is 
found to be good. The results suggest that ,  for observing large Bijvoet  differences, a structure 
containing a large number  of anomalous scatterers with a centric configuration is the least favour- 
able as compared with a structure containing either a small number  of atoms (one or two) or a 
large number  with an acentric configuration. 

1. Introduction 
The use of the anomalous dispersion technique in 
crystal structure analysis, particularly ~or the deter- 
mination of the absolute configuration of a structure, 
was first pointed out by Bijvoet (1954) and the method 
has since then proved to be one of the most interesting 
applications of X-ray methods to the elucidation of 
chemical structure. The full potentialities of the effect 
came to be realized soon and methods of applying 
it to actual structure determination were evolved 
almost simultaneously, but independently, by two 
groups of workers, namely, Ramachandran & Raman 
(1956) and Pepinsky and collaborators (0kaya, 
Saito & Pepinsky, 1955; Pepinsky & 0kaya, 1956). 

The approach of l~amachandran & l~aman was 
basically from the Fourier-synthesis point of view, 
whereby the phase angle of a reflexion could be solved 
for, but for an inherent ambiguity, from the Bijvoet 
differences.* Of these two possibilities in the phase 
angle, the one which is closer to the heavy atom 
phase is taken to be the correct one and a Fourier 
synthesis, using these phases, would yield the struc- 
ture. Pepinsky and co-workers have, however, ap- 
proached the problem from the point of view of the 

* We shall use the term Bijvoet difference to denote the 
difference in intensity between inverse reflexions; that is 
I----I(H)--I(H). Here H stands for the reflexion indices hkl 
and H for h-~. 
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Patterson function, using the Bijvoet differences and 
its deconvolution. Both approaches, in effect, lead to 
the structure in its absolute configuration. 

The anomalous dispersion technique has since then 
proved to be increasingly successful in the determina- 
tion of the structure of a number of compounds 
(Raman, 1959; Dale, Hodgkin & Venkatesan, 1963; 
Kartha,  1963). The success of all these methods 
depends to a large extent on the possibility of measur- 
ing, with considerable accuracy, the Bijvoet dif- 
ferences of a fairly large number of reflexions. Although 
one would expect that  counter techniques would be 
necessary for such measurements it is interesting to 
note that  even the ordinary photographic technique 
with visual estimation has proved to be quite successful 
in certain cases (Dale et al., 1963). However, it is 
to be mentioned that  all the structures that  have been 
solved by this method belong to the space group P21 
with two anomalous scatterers in the unit  cell. 
Although precise information is lacking as to whether 
this effect is observed to be pronounced in structures 
containing larger numbers of anomalous scatterers, 
it appears, at any rate, that  the case of two anomalous 
scatterers in the unit  cell is favourable for observing 
this effect. The present work was undertaken with a 
view to examine the effect of the number of anomalous 
scatterers in the unit  cell on the statistical distribu- 
tion of Bijvoet differences. This actually arose out 
of a remark* by Prof. X~amachandran that  the rather 
marked anomalous dispersion effect observed for the 
space group P21 might possibly be due to the rather 
peculiar nature of the intensity distribution for a 
two-atom structure (Srinivasan, 1960) and that  it 
would be worth while studying the statistical distribu- 
tion of Bijvoet differences in relation to the number 
of anomalous scatterers in the unit  cell. We shall 
therefore consider three cases, namely, structures 
containing one, two and many anomalous scatterers 
in the unit  cell, in addition to a large number of 
non-anomalous scatterers. For brevity we shall be 
referring to these three as the one-, two-, and many- 
atom cases respectively. In  the last case, actually, 
we shall also have to consider two possibilities, namely 
when the group of anomalous scatterers takes a 
centrosymmetric or non-centrosymmetric configura- 
tion. For brevi ty we shall refer to these two as 
P-centric and P-acentric respectively. The theoretical 
distribution functions are given in the form of curves 
for all the cases. They have also been tested with 
calculations based on hypothetical models and also 
on a few known structures. The agreement with 
theory is found to be good. 

As to the question of the most favourable case for 
observing large Bijvoet differences, theory suggests 

* This was made during a discussion at a recent symposium 
on Protein Structure and Crystallography, held at Madras 
in January 1963. See Crystallography and Crystal Perfection 
(1963), p. 242. Ed. G. N. Rama-handran. London and New 
York: Academic Press. 

that  the one-atom case is the best, followed by the 
two-atom and many-atom cases (P-acentric) which 
behave rather closely, and finally by the many-atom 
case (P-centrie). It  should be remarked, however, 
that  the differences between all these cases are not 
so pronounced as to enable us to choose any one in 
overwhelming preference to another. The choice, 
therefore, depends on certain other practical factors 
and these will be discussed in § 5. The next section 
is devoted to the derivation of the formulae, while 
§ 3 and § 4 will be concerned with the discussion of 
the nature of the distributions and the testing of the 
theoretical results respectively. 

2. Derivation of the probabi l i ty  distr ibution 
of the Bijvoet differences 

We assume that  a non-centrosymmetric crystal con- 
tains P identical anomalous scatterers and a large 
number (Q) of light atoms (non-anomalous scatterers) 
in the unit  cell, the total number of atoms being 
N = P + Q .  We shall represent the atomic scattering 
factor of the anomalous scatterer asfl~ =fo + Af'p + iAf~ 
=f'p+if'/ and that  of the non-anomalous scatterer 
by fQ. It  is convenient to use the Argand diagram to 
bring out the various relations between the structure 
factors (Fig. 1). Thus •Q(H) denotes the contribution 
to the reflexion H by the light atoms and F~(H) and 
F~(H) denote respectively the contributions due to 
the real and imaginary parts of the atomic scat- 
tering factors of the anomalous scatterers. /~.(H) 
(=F~(H)+FQ(H))  denotes the total contribution to 
the reflexion H by the real parts of the atomic scat- 
tering factors of all the atoms in the unit  cell. The 
corresponding quantities for the inverse reflexions 

are shown with the symbol H. Strictly, the various 

quantities for the reflexion H should have been shown 
in Fig. 1 below the X axis. But in order to bring out 

F (H) Y 

O X 
Fig. 1. The relationship between the various components of 

the structure factor of the inverse reflexions H and H. 
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the  geometrical  relations clearly, this  pa r t  of the 
d iagram has been reflected about  the X axis, so t ha t  
F:v(H) coincides with F~v(H). The angle between 
F~v(H) and F~(H) is t e rmed ~ and tha t  between 
~'~(H) and 2'Q(H) is t e rmed  ~v. 

The Bijvoet  difference of the inverse reflexions 
H and  H can be shown, from simple geometrical  
considerations, to be (Ramachandran  & Raman,  1956; 
Peerdeman & Bijvoet,  1956) 

A IFN(H)I~ = [ F ~ ( H ) I  ~ -  IF~(H)I  ~. 

= 41-~;;llFSvl cos ~ .  (1) 
/~ is clear from Fig. 1 t ha t  [F~vl cos ~ = IF¢I sin % 
using which we get from equat ion (1) 

A l ~ l ~  =41F~;II~'QI sin ~o. (2) 

The reason for recasting the expression (1) into 
form (2) is t h a t  the la t te r  has the advantage  tha t  the 
three quanti t ies on the r ight  hand  side are independent  
random variables. This becomes clear from the fact 
tha t ,  f irstly,  the contributions to the various reflexions 
by  the atoms P and Q are ent i rely independent  of 
each other. Also, for a given [Fel and IF~I, the vector 
FQ can lie anywhere along a circle of radius I_~QI so 
tha t  the angle ~v is randomly  and uniformly dis t r ibuted 
over the range 0 to 2~ and is independent  of IFQI. 
Thus, the dis tr ibut ion of A ]F~I ~ can be worked out, 
since it  is expressed as the product  of three indepen- 
dent  random variables. The dis t r ibut ion of [F¢[ sin 
can first  be obtained since tha t  of IFQI and sin ~p are 
known. The dis t r ibut ion of I~;;I depends on the 
number  of anomalous scatterers and has to be con- 
sidered separate ly  for the three cases. 

For  convenience we now define a new variable x 
by  the relat ion 

I/IF~I~I I~:AI I~QI - - , ,  -- ,, Isiny~[ , x -- 4aQap ap ~rQ 
where (3) 

Q P 
t t  2 t t o  

= a n d  o p  = 
j=l k=x 

We shall denote IFQI/~¢ and IF);I/~:; by  y¢ and y:2 
respectively. They  are the normalized s t ructure  
ampli tudes corresponding to the contributions from 
the atomic scat ter ing factors of the Q-atoms and the 
imaginary  pa r t  of the atomic scattering factor of the 
P-a toms respectively. Equa t ion  (3) now takes the form 

x=y~yQ ]sin ~vl. (4) 

The advantage  of choosing x instead of £][FNI 2 
is t ha t  i t  is a normalized stat is t ical  variable in the 
sense t ha t  the  various theoretical  dis t r ibut ion func- 
tions t u rn  out to be independent  of the parameters  
aQ and ap t ha t  characterize a par t icular  crystal.  

We shall f irst  obtain the dis tr ibut ion of [FQ] lsin y~[, 
since i t  is common for the three different cases which 
we shall be considering. Since yJ is uniformly dis t r ibuted 
in the range 0 to 2~, the dis t r ibut ion of [sin Y~l, is 

/)1 (]sin ~v[) = 1/2z]/(1--  sin~ ~v). (5) 

The dis t r ibut ion of y¢ for the non-eent rosymmetr ie  
case is given by  (Wilson, 1949; R a m a c h a n d r a n  & 
Srinivasan, 1959) 

P2(yQ)=2yQ exp [ - -y~] .  (6) 

We shall use the well-known theorem in probabi l i ty  
tha t  if x and y are independent  random variables 
with probabi l i ty  densi ty  functions P~(x) and P2(y) 
respectively, then  the probabi l i ty  dens i ty  function 
of the variable z = x y  is given by  

Ps(z) = f Pl(x)Pg(z /x)dx/x  

= I?~(z /y)P2(y)dy/y .  (7) 

Using theorem (7), we can write the dis tr ibut ion of 
yQ [sin ~[ = t as 

Ps(t) = ,J~o=o P1 (Isin ~v])Pe I sin YJI ' 

where P1 (]sin ~1) and P2(yQ) are given by  (5) and (6) 
respectively. Thus we get 

f ~ 1 2t  
P3(t) = 2 02~rV(1-sin2~v ) [sin~o] 

{ t2 } d s i n  yJ 
x exp sine l sin ~v I (8) 

The factor 2 appears on the r ight  hand  side since 
we are interested only in IA 1~'~121 and not  in A IFNI 2. 
Equat ion  (8) simplifies to 

P8 (t) 2t I x = - -  cosec 2 ~v exp [ -  t2(1 + cot 2 ~)] dv 2 
0 

2t  e x p  ( - t 2) ( - t ~. - ~r 0 exp cot 9 ~o) d (cot ~o). (9) 

Making the subst i tu t ion t cot y~=u in (9) we obtain  

Pa (t) = _2 exp ( - t2) exp ( - u 2) du 

= ( 2 / 1 / ~ )  e x p  ( - t 2 ) .  ( 1 0 )  

t t  We can now work out the dis tr ibut ion of x=typ  
where the dis t r ibut ion of t is given by  (10). The 
probabi l i ty  dis t r ibut ion of y); depends on the number  
of anomalous scatterers in the uni t  cell and i t  will 
be worked out for the three different cases respectively. 

(a) One.atom case 
If the  origin is chosen on the anomalous scat terer  

itself, then  we have [F~[ =f~  and o'~=f~, so t ha t  y~ 
is a constant  equal  to uni ty .  Hence x = t  and the 
probabi l i ty  densi ty  function of x is given by  

P(x)=(2/V~r ) exp ( -x2 )  . (11) 
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This density function is in the normalized form. 
I t  is useful to work out the expectation value of x also. 
Thus we have, for the present case, 

<x> = (2/1/~) x exp ( - ~ ) d ~  
0 

= 1/1/z= 0"5641 . 

(b) Two-atom case 
In  this case we can choose the origin midway 

between the two anomalous scatterers. The distribu- 
tion of yp is given by (Srinivasan, 1960) 

2 
Pd(y) = ,,2 " 0 < yp < }/2. (12) 

~1 / (2 -yp  ) '  - - 

Making use of equations (7), (10) and (12), we get 
t t  

the distribution of x=typ to be 

P ( x )  = I v2 . . . . . . . .  . o P3(x/yp)P4(yp)dyp/yp (13) 

Using the substitution yp = 1/2 sech u, the integral (13) 
reduces to 

S (x2 ) 
P(x) = ~ exp ( -x2/4)  0 exp - ~- cosh 2u d(2u) 

= (1/2/~1/~) exp (-xe/4)Ko(x2/4), (14) 

where Ko(x) is the Bessel function of order zero with 
imaginary argument (Watson, 1944, p. 181). 

That  the function (14) is correctly normalized 
can be verified easily by showing tha t  the integral 
reduces to unity.  Thus, if we substi tute xe/4=y in 
(14) we get 

l ~ y  -1/2 exp ( -y )go(y)dy  , 
1/~ d0 

which, by virtue of the relation (Erdelyi, 1954) 

l °~x-1/2 exp ( - x )  cos (4axl/2)Ko(x)dx 
0 

= 2-1/2~ 3/2 exp (-a2)Io(a 2) , 
reduces to unity. 

The expectation value of x for the present case is 
given by 

1/2 I ~ = x exp ( - x~/4)Ko(xg/4) dx.  (15) <x> 

This integral can be shown to reduce to (Appendix I) 

<x> = (2/z)8/9 =0.5029.  

(c) Many-atom case 
(i) P-group centric. - -  The distribution of y~ in 

this case is (Wilson, 1949; Ramachandran & Srinivasan, 
1959) 

ps(y'~)=(2/~)l/2exp ( -y~9 /2 ) .  (18) 

Making use of equations (7), (10) and (18), the distri- 
bution of x takes the form 

21/2('~expFlo [ ""e x 2  " YP y-~21 dye (19) P(x) = ~ 2 y~ " 

,,,,2 1/2x exp (20) equation (19) On substi tuting vP = 
simplifies to 

P(x) = (21/2/~) exp [ -  I/2x cosh (20)]dO 

= (21/2/~) exp [ -  l/2x cosh (20)]d(20) 
0 

= ( 2 1 / 2 / ~ ) K o ( 1 / 2 x ) .  (2O) 

This probability density function is in the normalized 
form and gives the expectation value of x to be 
(Appendix II) 

<x>= 1/2/~r = 0.4502. 

(ii) P-group acentric.* - -  In  this case the distribution 
of y~ is given by 

P(y~)=2y~, exp (_y~2) .  (21) 

Making use of equations (7), (10) and (21) the distribu- 
tion of x takes the form 

I 
OO " 2  " 

P(x) = (4/1/~r) exp [-y~,2-(x2/yp )]gyp, (22) 
0 

which, on integration, gives (see p. 275, equation 427 ; 
Hodgman, Weast  & Selby, 1958) 

P(x) = 2 exp ( - 2x) . (23) 

This is obviously in the normalized form. The expecta- 
tion value of x is given by <x> = ½. 

3. N a t u r e  of the probability distributions 

The probabil i ty density functions for the three cases 
are shown in Fig. 2. The curves for the many-atom 
case (P-centric) and also for the two-atom case have 
a singularity at  the origin, and this is obvious from 
the nature of the expressions for them (equations 
(14) and (20)), which contain the Bessel function Ko(x). 
I t  seems to be convenient in such cases to deal with 
the cumulative function N(x) which is the integral 
of the probabil i ty density function. This function 

iV(x)= f:P(x)dx 

has been calculated by graphical integration for the 
two-atom case and for the many-atom case (P-centric). 
In  the one-atom case ~(x)  takes the simple form 
Erf  (x) while in the many-atom case (P-acentric) i t  
is given by  1 - e x p  ( - 2 x ) .  The ~(x)  curves for all 
the four cases are shown in Fig. 3. 

Our main interest  in these curves is to compare 
their behaviour for fairly large values of x. I t  may  

* By oversight this case had not been considered by us 
at first. This was pointed out to us by Prof. G. N. Rarnachan- 
dran. 
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be seen from Fig. 2 tha t  the curve for the one-atom 
case passes well above the others for moderate and 
large values of x, indicating thereby that  it is more 

4-0 

3-2 

2"4 

1 " 6 ~  

0"8I~ ~ 

0 0"5 1 "0 1 "5 
X 

2:0 215 

Fig. 2. Theoretical probability density function for the 
normalized Bijvoet difference x, for (A)one-a tom case, 
(B) two-atom case; (C1) many-atom case (P-centric), and 
(C2) many-atom case (P-acentric). 

.,,-.,.. 

1 .ol 
0"8 

0"6 

0"4 

0"2 

0 

~ C2 A 

0!5 1 ~0 115 210 

Fig. 3. Theoretical cumulative function for the normalized 
Bijvoet difference x, for (A) one-atom case, (B) two-atom 
case, (Cz) many-atom case (P-centric), and (C2) many- 
atom case (P-acentric). 

favourable than all the other cases for observing 
large Bijvoet differences. This feature, in general, 
decreases progressively for increasing values of the 
number of anomalous scatterers in the unit  cell. The 
curve for the many-atom case (P-acentric) is, how- 
ever, fairly close to tha t  of the two-atom case even 
for moderately large values of x, and in fact they 
become practically indistinguishable for still larger 
values. The curve for the many-atom case (P-centric) 
falls below all the others and thus it is the least 
favourable for observing large Bijvoet differences. 

The progressive change in the behaviour of the 
curves is also reflected in the mean value of x. For 
instance, the value is maximum for the one-atom case 
(0"564) while it  is minimum for the many-atom 
(P-centric) case (0.45). The values for the two-atom 
and many-atom (P-acentric) cases are very close to 
each other (0.503 and 0.500 respectively). In fact 

this is a direct consequence of the difference in the 
value of <y~> for the different cases. For, we can 
write, since y~ and t are independent, <x)=  < y ~ t ) =  
<yp><t> where <t} is given by 1/V~ and <y~} takes 
the value l, 21/2/~, V(2/~r) and V~/2 respectively for 
the one-, two-, and many-atom (P-centric and P- 
acentric) cases respectively. 

4. Tes t  of the  theore t i ca l  c u r v e s  

The theoretical curves given in Figs. 2 and 3 have 
been tested mainly with a hypothetical model and 
in a few cases with known structures for which 
experimentally observed data for the Bijvoet dif- 
ferences were available. The hypothetical structure for 
the many-atom case (P-group acentric) was based 
on a two-dimensional unit  cell in the plane group 
symmetry  pg (Fig. 4) with 6 chlorine atoms as anom- 
alous scatterers (for Cu K a ,  Arc I = 0.23 and df~'~ = 0"69) 
and 18 carbon atoms. For the two-atom case the same 
unit cell was used except tha t  the chlorine atoms 
marked a, a', c and c' were removed. For the one-atom 
case the rectangle marked A E . F D  was used except 
tha t  the chlorine atoms marked a and c were removed. 

A E B 

• a * 

C 

O c" 

O b' 

Q 

D F C 

Fig. 4. Hypothetical structure in the plane group symmetry 
pg for the many-atom case. Unit-cell dimensions are 
10/k x 10 .~. • Chlorine, • Carbon. 

The values of x for the various reflexions in these 
hypothetical eases were calculated from the formula 
(Appendix III)  

x = (apbQ -- bpaQ)/t, '(PQ) . (21) 

These values of x which we shall call the 'experimental 
values' were used to obtain the data  shown in Fig. 5. 
I t  may  be seen tha t  the points representing ex- 
perimental values follow closely the theoretical curves 
N(x) for all the cases. Only in the many-atom case 
(P-acentric) there appears to be initially a slight 
deviation of the experimental points from the 
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theoret ical  curve. This might  p robably  be due to 
the fact  tha t  the value 6 used for the number  of 
anomalous scatterers in  this  case was not  large enough. 
I t  appears tha t  a value P >  10 would give a close 
approximat ion  to the asymptot ic  d is t r ibut ion (Slack, 
1946).* In  the centrosymmetr ic  case, however, i t  
appears tha t  even three pairs of atoms is a sufficient 
approximat ion  to the asymptot ic  d is t r ibut ion (Qurashi, 
1953). 

The theoretical  curves were also tested with the 
ac tua l ly  observed Bijvoet  differences in  two crystals. 

I 
1 "0 I- ~ .  ~'' 

0.8 | //" I0"5 
z 0.4 / 

/ 
0.2 

/ 
o 

o I!o 

1"0 

0"8 

0"5 

~'o.4 
0"2 

0 
0 

1'0 

0"8 

to6 

0"4 

0-2 

2!o 

(a) 

3!o 

f . ~ o  

/ 
/ 

i!o 2~o 31o 
X 

(b) 

0 110 2!0 310 
X ~  

(c) 

Fig. 5. Comparison of experimental data with the theoretical 
cumulative distribution of normalized Bijvoet difference 
for (A) one-atom case, (B) two-atom case, and (C) many- 
atom case (P-acentric). The solid lines are theoretical 
curves and dots represent experimental values. 

* We wish to thank the referee for bringing this reference 
to our notice. 
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The da ta  were avai lable  only for the  two-atom case, 
name ly  L( + )-lysine hydrochloride d ihydra te  (Raman,  
1959) and  L-tyrosine hydrochloride (Par thasara thy,  
1962; Srinivasan,  1959) both  of which belong to the 
space group P21. The exper imenta l  points  for these 
two cases are shown along wi th  the theoretical  P(x) 
curve in  Fig. 6 and  there is seen to be good agreement  
between the two. 
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• Hypoth 
• L-Tyrosine 
x L-Lysine 

2 0  • 
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1"0 

0"5 

0 x A-'----~--:~x, .--___~. II - _ _ ~  
0 0"5 1 "0 1 "5 2"0 2"5 

x 

Fig. 6. Comparison of experimental data with the theoretical 
probability density function of the Bijvoet difference, 
for the two-atom case. 

• Hypothetical two-atom ease. 
• L-tyrosine hydrochloride. 
× L( + )-lysine hydrochloride dihydrate. 

5. Conc lus ion  

The results of the foregoing sections indicate  tha t  
in  order to observe fa i r ly  large Bijvoet  differences 
one should choose, in  order of preference, a s tructure 
containing one, two or m a n y  anomalous scatterers 
with an  acentric configuration and  las t ly  m a n y  
anomalous scatterers wi th  a centric configuration. 
This is, however, based pure ly  on probabi l i ty  con- 
siderations. But  there are certain other factors t ha t  
have to be considered in  applying the results to actual  
s t ructure analysis.  Thus i t  is well-known tha t  the 
de terminat ion  of phases by  the anomalous dispersion 
method has a twofold inherent  ambigui ty .  One method 
of resolving this ambigu i ty  is to use both the phases, 
which is what  is done effectively in  the fl-anomalous 
synthesis  (Ramachandran  & Raman ,  1959). The 
nature  of the resul tant  map  depends to a large ex tent  
on the anomalous scatterers. If  the P-a toms  have a 
centre of symmet ry ,  as is necessarily the case for the 
one- and two-atom cases, there is a duplicat ion of the 
structure about  the centre of symmet ry  of the P-group;  
the inverse peaks have, however, negat ive strengths.  
If  the P-group is acentric, the concentrat ion of the 
negative peaks does not  occur, bu t  diffuses into 
a negative background. I t  would appear  therefore 



1406 T H E  P R O B A B I L I T Y  D I S T R I B U T I O N  OF B I J V O E T  D I F F E R E N C E S  

tha t  the case of many anomalous scatterers with an 
acentric configuration is to be preferred. At any rate 
the many-atom case with the P-group having a 
centric configuration seems to be the least preferable 
in view of the duplication of the peaks and also the 
rather  low probabili ty of occurrence of large Bijvoet 
differences. 

In  the case of one and two anomalous scatterers in 
the unit  cell it  is, however, a point to be examined 
whether the occurrence of duplication is such a real 
disadvantage as to offset the other favourable feature, 
namely tha t  they have a fairly high probabili ty of 
exhibiting large Bijvoet differences. In  fact, the 
duplication of peaks in these cases is not a real dis- 
advantage as one might be tempted to assume initially. 
I t  can probably be taken to be more of an advantage 
because it  helps the interpretation of the map in terms 
of peaks of equal but  opposite strengths related by  
an inversion about the apparent centre of symmetry  
introduced by the P-group. The only difficulty tha t  
may arise is tha t  there may  be partial  cancellation 
of peaks due to overlap resulting from atoms which 
are nearly centric with reference to the centre of 
inversion of the P-group of atoms. 

Instead of using both the possible phases in the 
Fourier synthesis, one may adopt a different procedure. 
This arises from the fact tha t  the anomalous scatterers 
are invariably heavy atoms and the phase of a reflexion 
is in general dominated by the phase of these heavy 
atoms. Since the contribution of the heavy atom to 
the phase of a reflexion will in general be known, 
one might choose, out of the two possible phases, 
the one tha t  is nearer the phase of the anomalous 
group and use it in the Fourier synthesis. The duplica- 
tion of the peaks will not be present in such a map. 
This procedure has been adopted successfully in a 
recent structure determination (Dale et al., 1963). 
Thus, it appears that ,  in order to have larger Bijvoet 
differences, it  will be profitable to look for crystals 
containing one or two anomalous scatterers in the 
unit  cell or many anomalous scatterers with an 
acentric configuration. Such an a t tempt  is likely 
to be more rewarding with the two-atom case, in 
view of the rather high frequency of occurrence of 
the monoclinic space group P2t. 

the integral (A1) becomes 

(x} = (2/u) 8/2 exp [ - y ( 1  +cosh t)]dtdy. (A2) 
t - -0  y = 0  

Performing the integration with reference to y first, 
the integral (A2) becomes 

(,x) = (2/~) 81~ exp [ - y ( I  +cosh t)]dy 
= y=O 

I ~ dt 
= (2/~)3z2 1 + cosh t t = 0  

If we put  t/2 =u, the above integral becomes 

~x) = (2/re) a/9' seth 9' udu 
0 

= (2/~)312 = 0.5079. (A3) 

APPENDIX I 
If we use the substitution x2/4=y, the integral (15) 

reduces to A P P E N D I X  III 

~x) = (2/~) 3/2 exp (-y)Ko(y)dy.  (A1) We have in an obvious notation 
0 

A P P E N D I X  II 

To see tha t  the density function (20) is ill the nor- 
realized form, consider the integral 

i l P(x)dx = (2V2/~) Ko(~/(2)x)dx. (A4) 
0 0 

Changing the variable to v = ~/(2)x, the above integral 
becomes (Watson, 1944, p. 388) 

(2/~) Ko(v)dv= 1. (A5) 
o 

The expectation value of x is given by 

(x} = (2V2/~) xKo(/2x)dx. (A6) 
o 

Using the same substitution v = ~/2x we get (Watson, 
1944, p. 388) 

<~> = (V2/~) vKo(v)dv 
0 

= 72/ =0.4502. (AT) 

Using the integral definition of the Bessel function 
K0(y), namely, 

Ko(y) = exp ( - g cosh t) dt 
0 

~"(H) = ~ fi exp (iOn) 
t - . 1  

where 0 ~ = 2 z H . r j .  Separating 2'(H) into two parts  
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corresponding to the  contr ibutions f rom the P and  
Q atoms,  we have  

P q 
F (H)  = ~Y, fp  exp (iOp~)+,~Y fQ exp (iOQ~) . (AS) 

] = 1  k = l  

s tudy  was under t aken  and  with  whom we had  valuable  
discussions. One of us (S. P.) wishes to t h a n k  the  
Council of Scientific and  Indus t r ia l  Research for the  
award  of a Jun ior  Research Fellowship during the 
tenure  of which this work was done. 

Here  we have  omit ted  the  subscripts  j and  k in f e  
and  fQ respectively, since the  P a toms are all chlorine 
and  the  Q atoms are all carbon in our hypothet ica l  
model. For  convenience we denote 

P P 

cos Opj by ae  and  ~_: sin Opj by  bp.  
]=1 ]=1 

Using a similar nota t ion  for the  Q atoms, we have 

F ( H )  = (]'pq-if~)(apq-ibp)q-fe(aeq-ibQ) 

= (feaQq-f'pap--f~bp)q-i(fQbQq-f'pbPq-fpap). 

Similarly,  for the  s t ruc ture  factor  of the  inverse 

reflexion H we have  

- -  ., r t  • v . ,! 

~(H)  = ( f  ~a~ + f'~a~ + f~b~) - ~(f ~b~ + f'~b~ -f~a~). 

Hence we get, for the  Bijvoet  difference 

/1 IFI e = ]F (H) I~- ]F(H) I  ~ 

= 4fTfQ(apb Q -- bpaQ). 

I t  is easy to see t h a t  aQap= V(PQ)fpfQ. Thus, we 
have  f inally 

A IEI ~ apbQ -- bpaQ x - -  t t  

4aQae V(PQ) 

We should like to express our thanks  to Prof.  
G. N. l~amachandran ,  a t  whose suggestion the  present  
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